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Abstract

Recently, emotional talking face generation has received
considerable attention. However, existing methods only
adopt one-hot coding, image, or audio as emotion condi-
tions, thus lacking flexible control in practical applications
and failing to handle unseen emotion styles due to limited
semantics. They either ignore the one-shot setting or the
quality of generated faces. In this paper, we propose a more
flexible and generalized framework. Specifically, we supple-
ment the emotion style in text prompts and use an Aligned
Multi-modal Emotion encoder to embed the text, image, and
audio emotion modality into a unified space, which inher-
its rich semantic prior from CLIP. Consequently, effective
multi-modal emotion space learning helps our method sup-
port arbitrary emotion modality during testing and could
generalize to unseen emotion styles. Besides, an Emotion-
aware Audio-to-3DMM Convertor is proposed to connect
the emotion condition and the audio sequence to struc-
tural representation. A followed style-based High-fidelity
Emotional Face generator is designed to generate arbitrary
high-resolution realistic identities. Our texture generator
hierarchically learns flow fields and animated faces in a
residual manner. Extensive experiments demonstrate the
flexibility and generalization of our method in emotion con-
trol and the effectiveness of high-quality face synthesis.

1. Introduction

Talking face generation [13,38,46,58] is the task of driv-
ing a static portrait with given audio. Recently, many works
have tried to solve the challenges of maintaining lip move-
ments synchronized with input speech contents and syn-
thesizing natural facial motion simultaneously. However,
most researchers ignore a more challenging task, emotional
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audio-driven talking face generation, which is critical for
creating vivid talking faces.

Some works have achieved significant progress in solv-
ing the above task conditioned on emotion embedding.
However, there are three continuously critical issues: 1)
How to explore a more semantic emotion embedding to
achieve better generalization for unseen emotions. Early
efforts [41,47,55] adopt the one-hot vector to indicate emo-
tion category, which could only cover the pre-defined la-
bel and lacks semantic cues. Subsequently, EVP [19] dis-
entangles emotion embedding from the audio, while GC-
AVT [23] and EAMM [18] drive emotion by visual im-
ages. However, tailored audio- and image-based emotion
encoders show limited semantics and also struggle to handle
unseen emotion styles. 2) Could we construct multi-modal
emotion sources into a unified feature space to allow a more
flexible and user-friendly emotion control. Existing meth-
ods only support one specific modality as the emotion con-
dition, while the desired modality is usually not available in
practical applications. 3) How to design a high-resolution
identity-generalized generator. Early works [19, 41, 47] are
in identity-specific design, while recent works [18,23] have
started to enable one-shot emotional talking face genera-
tion. However, as shown in Fig. 1(a), GC-AVT and EAMM
fail to produce high-resolution faces due to the inevitable
information loss in face embedding and the challenge of es-
timating accurate high-resolution flow fields, respectively.

To address the aforementioned challenges, we first sup-
plement the emotion styles in the text prompt inspired by
the zero-shot CLIP-guided image manipulation [29,39,43],
which could inherit rich semantic knowledge and conve-
nient interaction after being encoded. As shown in Fig. 1(b),
unseen emotions, e.g., Satisfied, could be flexibly speci-
fied using the text description and precisely reflected on
the source face. Furthermore, to achieve alignment among
multi-modal emotion features, we introduce an Aligned
Multi-modal Emotion (AME) encoder to unify the text, im-
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Figure 1. (a) An illustrative comparison of GC-AVT [23], EAMM [18], and our approach. First, our method supports multi-modal emotion
cues as input. As shown in (b), given a source face, an audio sequence, and diverse emotion conditions, our results fulfill synchronized lip
movements with the speech content and emotional face with the desired style. Besides, benefiting from the effective multi-modal emotion
space and rich semantics of CLIP, our method could generalize to unseen style marked in Red. Second, the hierarchical style-based
generator with coarse-to-fine facial deformation learning helps us generalize to unseen faces in high resolution and provides more realistic
details and precise emotion than GC-AVT and EAMM. Images are from the official attached results or released codes for fair comparisons.

age, and audio emotion modality into the same domain, thus
supporting flexible emotion control by multi-modal inputs,
as depicted in Fig. 1(b). In particular, the fixed CLIP text
and image encoders are leveraged to extract their embed-
ding and a learned CLIP audio encoder guided by several
losses to find the proper emotion representation of the given
audio sequence in CLIP space.

To this end, we follow the previous talking face gener-
ation methods [34] that rely on intermediate structural in-
formation such as 3DMM, and propose an Emotion-aware
Audio-to-3DMM Convertor (EAC), to distill the rich emo-
tional semantics from AME and project them to the facial
structure. Specifically, we employ the Transformer [40]
to capture the longer-term audio context and sufficiently
learn correlated audio-emotion features for expression co-
efficient prediction, which involves precise facial emotion
and synchronized lip movement. Notably, a learned inten-
sity token is extended to control the emotion intensity con-
tinuously. Furthermore, to generate high-resolution realis-
tic faces, we propose a coarse-to-fine style-based identity-
generalized model, High-fidelity Emotional Face (HEF)
generator, which integrates appearance features, geometry
information, and a style code within an elegant design. As
shown in Fig. 1(a), unlike the EAMM that predicts the flow
field at a single resolution by an isolated process, we hier-
archically perform the flow estimation in a residual manner
and incorporate it with texture refinement for efficiency.

In summary, we make the following three contributions:

• We propose a novel AME that provides a unified multi-
modal semantic-rich emotion space, allowing flexible

emotion control and unseen emotion generalization,
which is the first attempt in this field.

• We propose a novel HEF to hierarchically learn the
facial deformation by sufficiently modeling the inter-
action among emotion, source appearance, and drive
geometry for the high-resolution one-shot generation.

• Abundant experiments are conducted to demonstrate
the superiority of our method for flexible and gener-
alized emotion control, and high-resolution one-shot
talking face animation over SOTA methods.

2. Related Work

2.1. Audio-driven Talking Face Generation

Early efforts focus on modeling the audio information
into pure latent feature space [4, 52, 56, 57] and employing
a conditioned image generation framework [12, 27] to syn-
thesize realistic faces. Recently, structural information has
been leveraged as the explicit intermediate representation
to bridge the gap between audio and visual domains. Das
et al. [7] capture facial motion in landmarks [51] from the
given audio sequence and then synthesizes texture condi-
tioned on these structures. Considering the attributes are
entangled within 2D landmarks, 3DMM [8] is introduced
in this task [34, 44, 47–50, 54]. Specifically, FACIAL [50]
predicts head pose, expression, and AU45 from deep speech
features by the fully connected networks. PIRenderer [34]
adopts LSTMs [15] to autoregressively deduce expressions
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Figure 2. Overview of the proposed method. Our method is a two-stage framework that transfers the audio content and multi-modal
emotion sources to a static portrait Is. Specifically, the Emotion-aware Audio-to-3DMM Convertor encodes MFCC sequence A1:T , the
emotion style zemo embedded from Aligned Multi-modal Emotion encoder, and a learnable intensity token σ to predict the expression
coefficient sequence β̂1:T . The followed High-fidelity Emotional Face Generator receives the style vectors zsty (in Green) mapped from
the modified coefficients and updated intensity token σ̂, the source appearance F s

0:N (in Olive) from Is, and the driving geometry F rd
0:N

(in Violet) from Ird, to hierarchically generate the facial deformation ϕ0:N to guide the animated emotional talking face synthesis.

and poses while LSP [25] employs GRUs [3]. We fol-
low these methods but use the non-autoregressive Trans-
former [40] to capture the long-term audio context and pro-
vide the sequence-level representations for more accurate
coefficients regression, which helps exhibit precise emotion
in the texture generator.

2.2. Emotion Conditioned Generation

Early efforts [9, 31] serve this task as the domain trans-
fer, but they fail to synchronize lip movement with speech.
Recently, MEAD [41] releases a high-quality talking head
video dataset with annotations of emotion category and in-
tensity. Subsequent works [41, 47] encode the expression
labels in one-hot vectors to maintain the desired expres-
sion. EVP [19] decomposes audio into the correspond-
ing emotion style to capture more semantic information.
However, these works are in identity-specific design. Con-
sequently, recent GC-AVT [23] and EAMM [18] explore
one-shot setting and drive facial expressions by reference
faces, but these methods only support emotion style ob-
tained from a single modality and struggle to produce high-
resolution faces. In contrast, we construct multi-modal
emotion sources into a unified feature space, supporting di-
verse modalities within a single model. Besides, our hierar-
chical texture generator could produce high-resolution faces
with the desired appearance, pose, and expression.

2.3. CLIP-guided Synthesis

CLIP [32] is perfect for visual tasks with textual assis-
tance, which has proven effective for image editing [11, 21,
29,35,43], domain transfer [22,24], and 3D avatar [16,39].

Besides, some works [1, 55] have verified the necessity of
employing multi-modal information. In this work, we sup-
plement the emotion style in text prompt and unify the
multi-modal features in the CLIP space, which contains rich
semantics and unprecedented textual and visual understand-
ing ability. Once trained, our method could generalize to
unseen emotion styles located in similar emotion domains
of CLIP, which is not considered in the previous emotional
talking face generation methods.

3. Method

The emotional talking face generation aims at driving the
source face by the given emotion style and audio content.
The desired framework for this task should embody sev-
eral core properties: 1) Since several modalities could rep-
resent emotion style, the designed method should support
diverse modalities within one single model to achieve a flex-
ible and user-friendly interaction. 2) The trained network
could be applied for unseen emotion styles and identities,
and generates high-resolution realistic faces. To achieve the
above goals, we first design an Aligned Multi-modal Emo-
tion (AME) encoder to produce a unified feature space in
Sec. 3.2. Then a Transformer-based Emotion-aware Audio-
to-3DMM Convertor (EAC) receives emotion style from
AME, along with given audio, to connect audio-emotion
inputs with the 3DMM (Sec. 3.3). Finally, we propose a
style-based High-fidelity Emotional Face (HEF) generator
to synthesize the realistic emotional talking faces of arbi-
trary identities by learning hierarchical facial deformation
(Sec. 3.4). Our pipeline is depicted in Fig. 2.
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3.1. 3D Face Descriptors

Following the previous works, we employ 3DMM pa-
rameters as the intermediate representation. With 3DMM,
the 3D shape S and albedo texture T are parameterized as:

S = S̄+Bidα+Bexpβ,

T = T̄+Btδ,
(1)

where S̄ and T̄ denote the mean face shape and albedo
texture. Bid, Bexp, and Bt are the bases of iden-
tity, expression, and the texture computed via Prin-
cipal Component Analysis (PCA). Coefficients θ ={
α ∈ R80,β ∈ R64, δ ∈ R80,γ ∈ R27,p ∈ R6

}
describe

the identity, expression, texture, illumination, pose, respec-
tively. Although off-the-shelf 3D face reconstruction model
D3DFR [8] could capture relatively accurate facial features,
they fail to produce reliable expression coefficients for ex-
treme emotional faces due to the lack of tailored training
on the corresponding dataset. Consequently, we do not di-
rectly adopt the extracted expression coefficients β as the
constraint for the EAC training (Sec. 3.3 Lemo).

3.2. Aligned Multi-modal Emotion Encoder

To unify the emotion conditions from the text, audio, and
image domains within one framework, we naturally choose
CLIP space as the multi-domain feature space. Specifically,
we design an Aligned Multi-modal Emotion Encoder, which
consists of the fixed CLIP text and image encoders, and the
learned CLIP audio encoder to produce emotion embed-
ding etext, eimg , and eaudio. In practice, the CLIP audio
encoder is the basic Transformer-based architecture with a
Cls token for pool purposes and learns to embed eaudio.
AME receives the synchronized multi-modal inputs during
training, and the output emotion code zemo is the combina-
tion of the above three embedding along the batch dimen-
sion, in which each modality shares the same ground truth.
Thus it allows pixel-level constraints on the generated face.
To facilitate unified feature space learning and emotion dis-
entanglement from the entangled audio, we further apply
a feature-level loss to align the eaudio to CLIP textual and
visual space simultaneously. For testing, we could adopt ar-
bitrary emotion embedding as zemo, which is more flexible
in applications:

zemo = [etext, eaudio, eimg] , at training stage
zemo ∈ {etext, eaudio, eimg} , at test stage

(2)

where [·] means concatenation. The merits of aligning
multi-modal emotion features to CLIP space are two-folder:
First, our model distills the emotion cues from the CLIP
domain and inherits rich semantic knowledge to benefit un-
seen emotion generalization. Second, CLIP already pro-
vides shared textural and visual feature space, which is eas-
ier to train a single audio encoder than the whole network.

3.3. Emotion-aware Audio-to-3DMM Convertor

Architecture. To project the audio content and emotion
style to expression coefficients of 3DMM, we propose a
Transformer-based Emotion-aware Audio-to-3DMM Con-
vertor. As shown in Fig. 2, A provides the information
of lip movement, and zemo is the emotion embedding. Be-
sides, instead of utilizing a one-hot coding to control the
emotion intensity [41], we prepend a learnable intensity to-
ken σ inspired by the ViT [10]. This token is the product of
the base learnable intensity vector and the intensity scalar:
σ = µσbase, where µ ∈ {1, 2, 3} during training, corre-
sponds to the ground-truth intensity annotated in MEAD. It
can be a random value range from 1 to 3 during testing. In
practice, we map the audio feature dimension and concate-
nate them with intensity token σ. The MLP is used to ini-
tially separate emotion cues from CLIP space. The above
are added with positional embedding PE and fed into the
Transformer Φ for expression coefficients prediction:

σ̂, β̄ = Φ([σ,MLP(A)] + PE + MLP(zemo)), (3)

β̂ = MLP(β̄). (4)

Objectives. We train this stage by using five losses:

LEAC = λEAC
clip Lclip + λEAC

emo Lemo + λEAC
rec Lrec

+ λEAC
lm Llm + λEAC

reg Lreg.
(5)

Clip Loss Lclip: As stated in Sec. 3.2, we force the emotion
feature from the audio close to that from the text and image
by using cosine distance: Limage = 1− cos(eimg, eaudio),
Ltext = 1− cos(etext, eaudio), Lclip = Limage + Ltext.
Emotion Consistency Loss Lemo: This is a critical term to
distill and infuse the semantic emotion representation of
CLIP. Due to the unreliable of extracted expression coef-
ficients (Sec. 3.1), we turn to the image level for help, pro-
jecting the modified 3DMM onto the 2D image plane with a
differentiable renderer: R(θ̂) → Ird, which is then blended
to the original face by the face mask M output from R:
I3d = M ⊙ Ird + (1 −M) ⊙ I. After that, we adopt an
emotion recognition network [28] to compute the percep-
tual difference between the input and rendered images:

Lemo =
∥∥∥φemo(I

3d)−φemo(I)
∥∥∥
2
, (6)

where φemo is the backbone before the last linear layer.
Reconstruction Loss Lrec: We compute the pixel level loss
between the input and the rendered images on the face area:
Lrec =

∥∥∥Ird −M ⊙ I
∥∥∥
2
.

Landmark Loss Llm: We predict 68 points from the original
3DMM θ and the modified one θ̂, obtaining l and l̂. L2

distance is used to measure them: Llm =
∥∥∥l− l̂

∥∥∥
2
.

Expression Regularization Loss Lreg: This term is used to
smooth the training phase, calculating the distance between
the β and β̂ with a small weight: Lreg =

∥∥∥β − β̂
∥∥∥
2
.
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3.4. High-fidelity Emotional Face Generation

Architecture. As shown in Fig. 1(a), GC-AVT does not
generate consistent texture and background with the source,
while EAMM relies on aligned inputs and produces blurred
results. Both are in low-resolution and poor quality. Thus,
we carefully modify StyleGAN2 [20] and propose High-
fidelity Emotional Face Generation. Specifically, as shown
in Fig. 2, we randomly sample a driving face Id from given
clips and a face with the same identity but different emo-
tion as the source Is. To transfer the audio-synchronized
lip movement, pose, and expression from the drive to the
source face, the style code is defined as:

zsty = Linear([αs, β̂d, δs,γs,pd, σ̂]). (7)

In addition to zsty , Esrc extracts pyramid appearance
features F s

0:N from the Is, where N is the number of HEF
blocks. Erd simultaneously provides hierarchical features
F rd

0:N , which embody the emotional textures and geomet-
rical guidance of the desired face from the Ird. Thus we
have three faithful implicit-explicit inputs for HEF. Fur-
thermore, to align the F s

i and F rd
i , different from existing

methods [18, 34, 36, 45] employing isolated flow fields pre-
diction module, we simultaneously estimate the spatial de-
formations and refine the final images in a residual manner
within each HEF block. As depicted in Fig. 2, we have:

F i+1 = [T (ϕi,F
s
i ),StyleConv(F i, zsty),F

rd
i ], (8)

ϕi+1 = Fflow(F i+1) +Up(ϕi), (9)

Îi+1 = Frgb(F i+1) +Up(Îi), (10)

where StyleConv denotes the style convolution in Style-
GAN2 (Up + Conv3 × 3 with modulation). Please re-
fer to its paper for more details. Up means upsampling,
T denotes warping operation, Fflow converts the high-
dimensional features to dense flow fields, and Frgb to re-
alistic RGB images, respectively.
Objectives. We employ three loss terms to measure the dif-
ference between Id and ÎN at the pixel and perceptual level
by a Reconstruction Loss Lrec as L1 distance and a Percep-
tual Loss Lp as the LPIPS loss [53]. Besides, we adopt
Adversarial Loss to ensure the authenticity of the generated
faces. The overall objective is a combination of the above:

LHEF = λHEF
rec Lrec + λHEF

p Lp + λHEF
adv Ladv. (11)

4. Experiments
4.1. Datasets and Implementation Details

Datasets. Our model is trained on MEAD [41] with eight
expression types (neutral, angry, contempt, disgusted, fear,
happy, sad, and surprised) and three intensity levels (levels
1, 2, 3), which contains fine-grained emotion annotation,
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Figure 3. Qualitative results on MEAD dataset. Different columns
mean several sampled timestamps (same as the following figures).
Images are from officially released codes for fair comparisons.

helping distill emotion space from CLIP for unseen style
generalization. We randomly select 36 identities of front-
view videos for training and the rest identities for testing.
Metrics. We adopt PSNR, SSIM [42], and FID [14] to eval-
uate the quality of generated images. We use Landmarks
Distance (LMD) [2] around the mouth and the confidence
score (Sync) proposed in SyncNet [6] to measure the accu-
racy of mouth shapes and lip synchronization. We compute
Cosine Similarity (CSIM) to evaluate identity preservation.
CurricularFace [17] is used to extract identity embedding.
We use Emotion Feature Distance (EFD) to measure the ac-
curacy of the emotion representation, which is extracted by
FAN [26] different from the model in the loss calculation.
Implementation Details. The EAC and HEF are trained
independently. For EAC, we randomly sample consecutive
T = 32 clips for training. The values of the loss weights are
set to λEAC

clip = 1, λEAC
emo = 1, λEAC

rec = 100, λEAC
lm = 0.1,

λEAC
reg = 0.01. We use a learning rate of 0.0002 and 128

batch size to train EAC with the Adam optimizer on one
V100 GPU. For HEF, we fix EAC and the values of the loss
weights are set to λHEF

rec = 5, λHEF
p = 5, λHEF

adv = 1.
This training phase also adopts Adam optimizer with 0.002
learning rate, using 8 V100 GPUs and 1 clip (8 images)
per GPU. The output image size of HEF is 512 × 512 with
N = 7 blocks. The audios are pre-processed to 16kHz, then
converted to mel-spectrograms with FFT window size 1280,
hop length 160, and 80 Mel filter-bank as PC-AVS [57].
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ECG. The top part is sampled from Fig. 3 of GC-AVT. The bottom
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cases are attached in the figure. We ignore the metric of mouth
shape because the audios for these sequences are not available.

4.2. Comparison with State-of-the-Arts

Qualitative Results. We show the results of M003 to en-
sure that each method could animate the source face, and
this identity is not in our training set. The first frame of each
test video as the source and its audio, label, and a random
face from the same video for multi-modal emotion condi-
tions. As shown in Fig. 3, we select three frames of two
emotion styles for comparison. It can be seen that common
audio-driven methods, Wav2Lip [30] and PC-AVS, struggle
to generate desired emotions with synchronized lip shapes,
while the synthesized images from MEAD are of poor qual-
ity. EVP and EAMM suffer identity inconsistency with the
source and show less rich expression due to lacking inten-
sity modeling. In contrast, benefiting from sufficient emo-
tion semantics and intensity learning, our method with text
as the emotion condition produces more accurate expres-
sions. Besides, our results show more realistic textures than
all competitors due to coarse-to-fine flow field and image
refining. We further compare our method with GC-AVT,
EAMM, and ECG [37]. As shown in Fig. 4, since GC-AVT
does not release codes, we adopt the officially attached re-
sults in its paper and employ image as our emotion con-
dition for a fair comparison. In terms of emotion accu-
racy, identity consistency, and image quality, our method
obviously outperform these SOTA methods. We also attach
the corresponding quantitative results of this case on EFD,
CSIM, and FID in Fig. 4, which are consistent with the qual-
itative results. The same conclusion could deduced from the
bottom part of Fig. 4 when compared with ECG.

Method EFD ↓ LMD ↓ Sync ↑ CSIM ↑ FID ↓ PSNR ↑ SSIM ↑

Wav2Lip 0.112 2.59 3.26 0.82 20.15 29.22 0.70
PC-AVS 0.110 2.68 3.12 0.80 29.55 28.97 0.68

MEAD 0.084 2.62 3.09 0.81 30.69 28.48 0.65
EVP 0.106 2.54 3.21 0.70 12.83 29.67 0.73

EAMM 0.092 2.50 3.26 0.74 29.01 29.33 0.75

Ours-A 0.069 2.36 3.50 0.83 15.91 30.09 0.85
Ours-I 0.071 2.36 3.53 0.84 15.89 30.10 0.87
Ours-T 0.065 2.31 3.57 0.84 15.90 30.09 0.88

Table 1. Quantitative comparison on MEAD dataset. Ours-A, -I,
and -T mean audio, image, and text, respectively.

Quantitative Results. We adopt several metrics to evalu-
ate the superiority of our approach on image quality, land-
mark accuracy, lip synchronization, identity preservation,
and emotion accuracy. As shown in Tab. 1, our method out-
performs most metrics except for the FID. EVP achieves
higher FID but exhibits a weak manipulated ability, which
can be inferred from the lower CSIM and Sync, and higher
LMD. Besides, comparing the last three rows, we ob-
serve that emotion modality mainly affects structural met-
rics, and text-driven results show better performance than
that of audio- and image-driven in most metrics, which
may attribute to the better emotion disentanglement of text
prompts. Thus we use the text as our default emotion con-
dition in the following experiments. We further report the
user study in supplementary materials, specially evaluating
the overall quality, the generalization to unseen emotions,
and the video temporal consistency.

4.3. Further Analysis

Generalizing to Unseen Emotion Styles. Unseen emotion
styles include compound and totally new styles. As shown
in Fig. 5, rows 2 and 3 are the basic styles, row 4 shows the
results of the given Sadly surprised, and row 5 of the av-
erage embedding of Happy and Surprised, which indicates
the flexible manipulation for compound emotion. We fur-
ther present the new style Hatred in the sixth row. The cor-
rect exhibition of these unseen styles verifies the flexibility
and rich semantic priors of the CLIP feature space.
Generalizing to Unseen Identities. As shown in Fig. 1 and
Fig. 4, our method trained on MEAD could generalize to
unseen identities from VoxCeleb2 [5]. We further conduct
a qualitative visualization in Fig. 6. Specifically, we sample
a face from CelebA-HQ as an unseen identity. The gener-
ated faces preserve the identity and exhibit desired emotion,
reflecting both on realistic and rendered faces. Besides, we
attach the flow map predicted from HEF in the fifth col-
umn. Please pay attention to facial movements, especially
in the mouth and eyes. We can conclude that HEF accu-
rately models the emotion-related facial movement condi-
tioned on the intermediate structure, which is not sensitive
to the identity textures. Thus MEAD is sufficient to provide
diverse movements for training.
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Hatred

Sad

Surprised

Sadly
surprised

Surprised FlowSource

Happy
+

Surprised

Source

Disgusted

Figure 5. Results of unseen emotion styles. Rows 4 and 5 (in Red)
are the compound styles, and row 6 (in Blue) is a totally new style.

Hatred

Sad

Surprised

Sadly
surprised

Surprised FlowSource

Happy
+

Surprised

Source

Disgusted

Figure 6. Results of unseen identity. We visualize the rendered
images, final outputs, and predicted flow fields. The color wheel
of flow fields is attached on the top right for reference.

Continuous Emotion Style Control. We conduct a qualita-
tive experiment to evaluate the effectiveness of our method
for controlling emotion style. As shown in Fig. 7, our
method could change the emotion representation between
two distinct styles, rather than previous methods only tak-
ing a neutral face as the source. We increase the intensity
value from 1 to 2.5, which shows continuous and accurate
expression changes. Please pay attention to the mouth and
eyes regions. Furthermore, we explore the style seman-
tics that already encode intensity, e.g., Extremely surprised.
Comparing rows 4, 5 with rows 2, 3, CLIP struggles to dis-
tinguish the intensity prompt. Thus the intensity token is
essential in our method.
Interpretability of Generalization. To analyze the ability
for unseen emotion generalization, we use t-SNE to visual-
ize the latent codes of updated intensity token. As shown in
Fig. 8, the four basic emotion styles (Marker △) represent
distinct clusters, while the clusters of those unseen emotion
styles (Marker □) are mainly located in semantically simi-

Contempt Disgusted Surprised

𝜇 = 1

𝜇 = 2.5

Happy

𝜇 = 1

Extremely Contempt Extremely Disgusted Extremely Surprised

𝜇 = 2.5

Figure 7. Results of different emotion styles and intensity levels.
The top part shows the manipulation from the happy to three dis-
tinct emotion styles. The bottom part shows the results of style
semantics that already encode intensity.

Happy

GT

w/o 𝑳𝒆𝒎𝒐

w/ 𝑳𝒆𝒎𝒐

（a）

（a） （b）

（b）

w/o 𝑳𝒆𝒎𝒐

w/ 𝑳𝒆𝒎𝒐

Figure 8. Clusters of the intensity token with the emotion and
emotion-unrelated text descriptions. Markers △, □, ♢ mean basic
emotion, unseen emotion, and emotion-unrelated text prompts.

lar areas. We further adopt two emotion-unrelated prompts
(Marker ♢). Obviously, these two clusters are far from those
of emotion and highly overlapped since both are meaning-
less to our model, i.e., their sampled faces are not changed
in Fig. 8. Thus, our method could represent various styles
located in similar emotion domains of CLIP.

4.4. Ablation Study and Efficiency Evaluation

Loss Functions. Emotion consistency loss is critical to dis-
till emotion cues from CLIP and improve the quality of ex-
pression coefficients. To verify its effectiveness, we present
the qualitative results in Fig. 9. This loss term helps to
capture precise and fine expression details, facilitating the
3D face reconstruction and emotion manipulation. Besides,
consistent quantitative results are reported in Tab. 3.
Emotion Encoding. Tab. 3 shows one-hot encoding and
language pre-trained model GPT2 [33] achieve comparable
results with CLIP on pre-defined styles. We further explore
the effect of these emotion encodings on the unseen emo-
tion in Fig. 10. One-hot fails to represent a new emotion
style due to the fixed pattern, and compound styles due to
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GT(Happy)

w/o ℒ𝒆𝒎𝒐

w/ ℒ𝒆𝒎𝒐

（a）
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w/o ℒ𝒆𝒎𝒐

w/ ℒ𝒆𝒎𝒐

HatredHappy + Surprised

One-hot

GPT2

CLIP

Sadly surprised

Source

N/A

Figure 9. Qualitative ablation study for emotion consistency loss
of EAC. (a) shows the effect on 3D face reconstruction of happy
emotion and (b) illustrates manipulation by angry emotion.

Method Params (M) Training Inference (1×V100)

GPUs days Memo (G) ms

EAMM-256 101.89 4×2080Ti 5 3.8 21
Ours-256 62.38 4×V100 3 2.4 26
Ours-512 62.97 8×V100 7 3.2 37

Table 2. Efficiency evaluation during training and inference.

lacking semantics. GPT2 is not available to the visual cues
and struggles to reflect the unseen textual semantics to the
image domain. Our method inherits rich visual and textual
priors from CLIP, exhibiting better generalized ability.
Architecture of EAC. To verify the effectiveness of the
Transformer encoder in EAC, we replace it with stacked
fully-connected layers or GRU-based recurrent neural net-
works. As shown in Tab. 3, our Transformer-based model
obviously outperforms the above two architectures.
Flow Estimation of HEF. We further design two variants to
explore the flow estimation structure, i.e., the one directly
outputs the flow fields without residual refinement at each
scale (w/o res.), and another one uses the fixed 64×64 flow
field to adapt to the following high-resolution layers of HEF
instead of further updating hierarchically (w/o hie.). Please
refer to supplementary materials for modification details.
The Fig. 11 and Tab. 3 verify the effectiveness of hierarchi-
cally learning deformation in the residual manner. Besides,
we observe that the fixed low-resolution flow field cannot
produce accurate animated high-resolution faces, which ex-
plains why FOMM [36] and EAMM are not competent for
high-resolution generation.
Efficiency Evaluation. We report the running efficiency in
the Tab 2. The cost increases obviously as the resolution
becomes larger. Notably, we achieve comparable training
costs and inference speed with EAMM under the same reso-

Happy

GT

w/o ℒ𝒆𝒎𝒐

w/ ℒ𝒆𝒎𝒐

（a）

（a） （b）

（b）

w/o ℒ𝒆𝒎𝒐

w/ ℒ𝒆𝒎𝒐

HatredHappy + Surprised

One-hot

GPT2

CLIP

Sadly surprised

Source

N/A

Figure 10. Qualitative ablation study of EAC with different emo-
tion encodings on unseen styles. This case is sampled from Fig. 5.

w/o res. w/o hie.OursTargetSource

Ours 128 Ours 256 Ours 512 w/o hie. 64w/o res. 512

Figure 11. Qualitative ablation study of HEF with different flow
estimation variants. We visualize the flow fields of w/o res. at
scale 512 and the fixed 64× 64 flow fields of w/o hie., both fail to
model the precise movement, while our method gradually refines
the high-resolution flow fields by hierarchical residual learning.

Method EFD ↓ LMD ↓ Sync ↑

w/o Lemo 0.096 2.40 3.53
w/ Lemo 0.065 2.31 3.57

One-hot 0.070 2.33 3.53
GPT2 0.067 2.33 3.56
CLIP 0.065 2.31 3.57

MLPs 0.122 3.54 2.23
GRUs 0.088 2.47 3.19

Transformers 0.065 2.31 3.57

w/o res. 0.082 2.46 3.21
w/o hie. 0.076 2.42 3.25

Ours 0.065 2.31 3.57

Table 3. Quantitative ablation study with different losses and com-
ponents, conducted on MEAD with basic styles by default.

lution (256×256), but our method is more memory-friendly,
i.e., lower model size and memory cost, which is compati-
ble with relatively cheap devices, e.g., 1080Ti.

5. Conclusions
In this paper, we propose a novel one-shot emotional

talking face generation framework. Specifically, a unified
multi-modal CLIP-based emotion space and a texture gen-
erator are proposed to generalize to unseen emotions and
guarantee the quality of animated faces, respectively. Qual-
itative and quantitative experiments demonstrate the superi-
ority of our approach over SOTA methods.
Acknowledgments. This work is supported by the Key
R&D Program Project of Zhejiang Province (2021C01035).
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